Spatial Variability in Surface Meteorology from a VOS and the ECMWF Model

Al Plueddemann, Frank Bahr, Dave Hosom and Bob Weller

Woods Hole Oceanographic Institution, Woods Hole, MA 02543 Contact: aplueddemann@WHOI.edu

The Upper Ocean Processes Group at WHOI has adapted a suite of Air-Sea Interaction Meteorology (ASIMET) sensors for installation on Volunteer Observing Ships (VOS). These systems have been installed on 5 different VOS over the last several years, providing a wealth of data along repeated (or nearly repeated) tracks in the Atlantic and Pacific basins. Among the goals of the VOS work is to assess the quality of numerical weather prediction models on a variety of spatial scales, as a complement to the time series assessment provided by Ocean Reference Stations. Our most extensive VOS data set comes from the container ship Horizon Enterprise, which crosses the North Pacific on an approximately 5-week schedule. In this presentation, we focus on the ~2400 mile segment between Oakland, California, and Honolulu, Hawaii. Surface meteorology from the VOS is compared with that from the ECMWF model for 29 transects during 2003 - 2006. Most variables show good agreement in the mean, but large standard deviations indicate shortcomings in the ECMWF model on short spatial scales. Some variables do have notable mean differences, for example ECMWF wind speed is ~ 2 m/s less than VOS on average.

Background

Central to efforts to improve the predictability of climate is the need to understand the physics of how the atmosphere and ocean exchange heat, fresh water and momentum. It turns to accurately represent that understanding in the models used to make predictions. As present, over much of the globe, quantitative maps of air-sea fluxes, derived either from ship reports, numerical model analyses or satellites, have errors that are large compared to the size of climatically significant signals.

To address the need for accurate in-situ observations on broad spatial scales, the Upper Ocean Processes Group at WHOI has undertaken a program of observations using variations of the Improved METeorology (IMET) sensor suite (ASIMET, AutoIMET) adapted for installation on Volunteer Observing Ships (VOS). These systems have been installed on 5 different VOS over the last 4 years, providing a wealth of data along repeated (or nearly repeated) tracks in the Atlantic and Pacific basins.

Observations made using IMET technology on long VOS routes that span the ocean basins are essential to providing the accurate, in-situ spatial scales, the Upper Ocean Processes Group at WHOI has adapted a suite of Air-Sea Interaction Meteorology (ASIMET) sensors for installation on Volunteer Observing Ships (VOS). These systems have been installed on 5 different VOS over the last several years, providing a wealth of data along repeated (or nearly repeated) tracks in the Atlantic and Pacific basins. Among the goals of the VOS work is to assess the quality of numerical weather prediction models on a variety of spatial scales, as a complement to the time series assessment provided by Ocean Reference Stations. Our most extensive VOS data set comes from the container ship Horizon Enterprise, which crosses the North Pacific on an approximately 5-week schedule. In this presentation, we focus on the ~2400 mile segment between Oakland, California, and Honolulu, Hawaii. Surface meteorology from the VOS is compared with that from the ECMWF model for 29 transects during 2003 - 2006. Most variables show good agreement in the mean, but large standard deviations indicate shortcomings in the ECMWF model on short spatial scales. Some variables do have notable mean differences, for example ECMWF wind speed is ~ 2 m/s less than VOS on average.

Data Set and Approach

Regional Coverage

Ship tracks for the Honolulu to Oakland transects are shown along with ECMWF grid cells. The transects are along similar, but not identical, routes covering a distance of about 2400 miles. A typical transit passes through 34 ECMWF grid cells. VOS data are averaged within each cell and compared to the matching ECMWF variables as a function of distance along the track. The 29 available transects provide about 1000 VOS/ECMWF comparisons.

Temporal Coverage

From 2003 to 2006 there were 29 transects of the Horizon Enterprise between Honolulu and Oakland, plotted here as a "stack" of transit duration in time of year. Each transit takes about 6 days to complete. A nominal 5 week repeat interval results in 10 transects in a "complete" year. The most complete seasonal coverage is from May - November (yeardays 120 - 310).

Sample Comparisons

Comparison of hourly averaged VOS variables (blue, with error bars) and ECMWF data (red) for the first 9 Honolulu-Oakland transects. Each transit spans about 6 days in time, and is plotted vs. longitude. The first transit of the group is shown at the bottom of the plot, an offset has been applied for successive transits.

VOS BP (left) compares well with ECMWF, mean difference ~ 0.4 +/- 1.0 mb. VOS RH (right) also compares well with ECMWF, mean difference ~ 4 +/- 0.6 deg C. However, smaller scale structure is not captured by the model. ECMWF wind speed is ~ 2 m/s less than VOS on average.

Wind speed comparison

Wind speed differences were of particular interest because additional transits (prior to 2003) were available but did not have absolute wind measurements, due to the lack of high resolution GPS data to perform the correction. The ECMWF model winds capture the variability seen in the VOS winds reasonably well (std dev of difference ~2 m/s), albeit with some bias. The mean difference over all points is 2.1 m/s. The character of the comparison can be seen in the data subset shown above.

Summary

Between December 2003 and November 2006, the VOS Horizon Enterprise traveled 29 times from Honolulu Hawaii to Oakland, CA. In-situ meteorological data from these transects were compared with ECMWF model variables. Each transit passed through about 34 ECMWF grid cells. VOS data were averaged to 1 hr and compared with ECMWF data for the appropriate grid cell during each ~6 day transit.

There are about 1000 comparisons overall between the roughly 1 degree square ECMWF grid cells and the hourly averages of VOS data as the ship passed through the grid. Most variables show good agreement in the mean, for example, mean BP and RH differences are about 0.4 mb and 0.4 deg C, respectively. Mean SST differences were quite small (less than 0.2 degrees), but we note that the ECMWF SST is derived from in-situ data sources. Most variables show notable differences on short spatial scales.

Wind vectors appear similar in both datasets, though ECMWF winds have a somewhat smaller amplitude (the mean difference between VOS and ECMWF winds is 2 m/s). Note that VOS winds come from the top of the bow mast at a height of 29m, whereas ECMWF model winds at 10m height - the height difference could contribute to the observed difference. Since we lack good absolute VOS winds prior to Dec 2003 - because of the lack of high-resolution GPS fixes - this comparison to ECMWF winds suggests that we may be able to substitute ECMWF winds to calculate fluxes from the earlier VOS data.

Further Information

Descriptions and figures for the datasets are posted on the VOS web site http://voss.whoi.edu/vos. Detailed technical information on the AutoIMET (VOS) and ASIMET systems is available at http://floods.whoi.edu.

Instrument design questions can be addressed to David Hosom at dhosom@WHOI.edu.

Acknowledgments

This work was supported by NOAA Office of Climate Observation through the WHOI Cooperative Institute for Climate and Ocean Research (CICOI). The assistance of many individuals from WHOI, NOAA and SIO, as well as the captains and crew of the ships, in maintaining the VOS VOS fleet is greatly appreciated.

ACKNOWLEDGMENTS

NOAA SEAS Office – Derrick Snowden, Janet Rossel

Scripps Institute of Oceanography – Dean Rhee, Glenn Pozzi

Southampton Oceanography Centre – Peter Taylor, Margaret Yelland,

Eckernförde-Kiel Center – Prof. Dr. Jürgen Oey

Irish Marine Institute (ICM) – Carmel Wolfe,

VOS Program Partnerships Include:

NOAA SEAS Office – Derrick Snowden, Janet Rossel

Scripps Institute of Oceanography – Dean Rhee, Glenn Pozzi

Southampton Oceanography Centre – Peter Taylor, Margaret Yelland,

Eckernförde-Kiel Center – Prof. Dr. Jürgen Oey

Irish Marine Institute (ICM) – Carmel Wolfe,

VOS coordinator